University of Computer Studies B.C.Sc. (Fourth Year)

CS-403 (Analysis of Algorithms)

Course Description

Course code number	CS-403	Course Title	Analysis of Algorithms
Semester hours	3 hours	No. of Credit Units	3
Prerequisite	CST-103, CST- 203	Course Coordinator	Dr. Kyar Nyo Aye

Course Aims

The aim of this course is to learn how to develop efficient algorithms for simple computational tasks and reasoning about the correctness of them. Algorithm design and analysis provide the theoretical backbone of computer science and are a must in the daily work of the successful programmer. Addition, this course is to provide a solid background in the design and analysis of the major classes of algorithms.

Learning Outcomes

Students who have completed this course should:

- be able to demonstrate how the worst-case time complexity of an algorithm is defined
- be able to compare the efficiency of algorithms using asymptotic complexity
- be able to design efficient algorithms using standard algorithm design techniques
- be able to demonstrate a number of standard algorithms for problems in fundamental areas in computer science and engineering such as sorting, and searching.
- be able to solve problems which are algorithm based by using various design techniques.

Course Contents

This course provides students with a broad foundation in computer science.

- 1. Models of Computation: Algorithm and Their Complexity, Random Access Machine, Computational Complexity of RAM programs, A Stored Program Model, Abstractions of the RAM, A primitive model of computation: the Turing machine
- 2. Design of Efficient Algorithms: Recursion, Divide-and-conquer, Balancing, Dynamic programming
- 3. Sorting and Order Statistics: The sorting problem, Radix sorting, Sorting by comparisons, Heap sort, Quick Sort, Order statistics

Reference Materials

1. Design and Analysis of Computer Algorithms by Alfred V. Aho, John E. Hopcroft & Jeffery D. Ullman

Course Organization

The expected learning outcomes for the course will be assessed through six forms of activity:

- 1. Attending the lectures
- 2. Preparing for and participating in the recitations.
- 3. Assignments
- 4. Reading the text
- 5. Quiz
- 6. Exams

Assessment

Exam	50%	
Tutorials/Test	10%	
Class participation	10%	
Assignment	10%	
Quiz	10%	
Moodle Test	10%	

45 periods for 15weeks (50 minutes for 1 period)

No	Chapter	Page	Period	Detail Lecturer Plan
Ι	Chapter (1)	2 to 41	25	Lectures + Tutorials + Exercise
	Models of Computation			
1.	1.1 Algorithm and Their	2-5	1	Detail Explain why we need to
	Complexity			analyze algorithm
2.	1.2 Random Access Machine	5-8	2	Detail Explain RAM model
	RAM Instruction & Meaning			Explain RAM instruction with Table
				1.4 and Table 1.5
3.	1.3 Teach writing ALGOL	9-11	2	Detail Explain about Fig 1.6 and 1.7
	program			Detail Explain about Fig 1.8 and 1.9
	Teach how to write RAM			Example 1.1, 1.2
	program			
4.	Exercise for RAM program	39,40	2	Ex 1.3, 1.5, 1.19
				(Tutorial and Exercise)
5.	1.3 Computational Complexity of	12-14	2	Explain how to express the uniform
	RAM programs			and logarithmic complexity of RAM
				program (Very Detail)
6.	Exercises for Complexity	39,40		Ex. 1.3, 1.4, 1.5, 1.6, 1.9
	expression for RAM program		2	(Tutorial and Exercise)
7.	1.4 A Stored Program Model	15-17	2	Detail Explain RASP Model and
	(RASP) Different between RAM			Theorem 1.1
	and RASP			
	Theorem 1.1			
8.	Theorem 1.2	18,19	2	Detail Explain Theorem 1.2
	RASP Program Exercise			Explain Complexity of RASP
				program
9.	1.5 Straight line programs	19-25	2	Detail Explain for Bitwise
	Bitwise Computations			Computational Model & Decision

	Bit Vector Operations			Tree
	Decision Tree			
10.	1.6 Turing Machine Model	25-31	2	Explain how to construct a Turing
				Machine and its properties
11.	Example 1.8 and 1.9	28,29	2	Fig 1.20, 1.21, 1.22
12.	Exercise	40	2	1.15, 1.16, 1.17 and Related Exercise
13.	Revision		1	Chapter Summary
14.	Tutorial		1	
II.	Chapter (2)	44 to 74	8	Lectures + Tutorials + Exercise
	Design of Efficient Algorithms			
15.	2.6Divide and Conquer	60-65	2	Very important section
	Definition, Two Examples of			Detail Explain definition and some
	MAXMIN			examples
16.	2.7Balancing	65-67	1	Briefly Explain
17.	2.8Dynamic Programming	67-69	2	Very important section
				Detail Explain definition and some
				examples
18.	Revision		1	Chapter Summary
19.	Exercises		1	Exercises from old questions
20.	Tutorial		1	
III	Chapter (3)	76 to	12	Lectures + Tutorials + Exercise
	Sorting and Order Statistics	105		
20.	3.1 The Sorting Problem	76-78	1	Explain about sorting problems
	3.2 Radix Sorting(Bucket Sort)			Briefly Explain
21.	3.2 Lexicographic Sort	78-80	1	Detail Explain
	(Algorithm 3.1)			
	3.2 Lexicographic Sort	80-84	2	Detail Explain
22.	(Algorithm 3.2)			
23.	3.4 Heap Sort	87-91	2	Detail Explain
	(Heapify, Build Heap Algorithms)			
	Analyze Complexity			
24.	3.5 Quick Sort	92-97	2	Detail Explain
	(Quick Sort, Partition Algorithms)			
	Analyze Complexity			
25.	3.6 Order Statistics	97-99	1	Detail Explain
	(Selection Algorithm)			
	Analyze Complexity			
26.	Revision		1	Chapter Summary
27.	Exercises		1	Ex. 3.1, 3.2, 3.4, 3.6, 3.7, 3.8, 3.11
28.	Tutorial		1	